Simulated environmental risk estimation of engineered nanomaterials: A case of cosmetics in Johannesburg City

Author:

Musee Ndeke1

Affiliation:

1. Natural Resources and the Environment, CSIR, Pretoria, South Africa

Abstract

This paper attempts to quantify the potential risks posed by engineered nanomaterials (ENMs) to the aquatic and terrestrial ecosystems from cosmetic-based nanoproducts. The predicted environmental concentrations (PEC) were modelled for the silver (nAg) and titanium dioxide (nTiO2) nanoparticles embedded in cosmetic nanoproducts. The Johannesburg Metropolitan City (JHB City), in South Africa, was used as the reference study area. A mathematical model was applied to compute the quantities of ENMs flows from the cosmetic nanoproducts into the JHB City aquatic and terrestrial ecosystems. The risk quotient (RQ) of the nanoscale materials were evaluated as a ratio of PEC to the predicted no effect concentrations (PNEC). RQ values showed wide variance due to factors like; the quantities of ENMs, the fate and pathways of ENMs in the aquatic and terrestrial ecosystems, efficiency of the wastewater treatment plants (WWTP) as well as the economic and demographic data for South Africa and Switzerland. For the aquatic environment, the PEC values of nAg ranged from 2.80 × 10−3 to 6.19 × 10−1 μg L−1 whereas for nTiO2 the values ranged from 2.7 0 × 10−3 to 2.70 × 10−1 μg L−1 under the realistic dilution factor of 1 with the WWTP functioning at high removal efficiency regime. The RQ values in the aquatic ecosystems were mostly >1, indicating the potential risk of both nAg and nTiO2 but <<<1 in the terrestrial ecosystems. Our results provide the first quantification of ENMs potential risk into the environment Johannesburg City in a developing country’s natural and technical settings.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3