Affiliation:
1. Laboratory of Toxicology, Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
2. Laboratory of Toxicology, Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 14155-6451, Iran
Abstract
The aim of this study was to evaluate effects of acute exposure to various doses of diazinon, a widely used synthetic organophosphorus (OP) insecticide on plasma glucose, hepatic cells key enzymes of glycogenolysis and gluconeogenesis, and oxidative stress in rats. Diazinon was administered by gavage at doses of 15, 30 and 60 mg/kg. The liver was perfused and removed under anaesthesia. The activities of glycogen phosphorylase (GP), phosphoenolpyruvate carboxykinase (PEPCK), thiobarbituric acid reactive substances (TBARS) and total antioxidant capacity (TAC) were analysed in liver homogenate. Administration of diazinon (15, 30 and 60 mg/kg) increased plasma glucose concentrations by 101.43% (P=0.001), 103.68% (P=0.000) and 160.65% (P=0.000) of control, respectively. Diazinon (15, 30 and 60 mg/kg) increased hepatic GP activity by 43.5% (P=0.05), 70.3% (P=0.00) and 117.2% (P=0.02) of control, respectively. In addition, diazinon (30 and 60 mg/kg) increased hepatic PEPCK by 77.3% (P=0.000) and 93.5% (P=0.000) of control, respectively. Diazinon (30 and 60 mg/kg) decreased liver TAC by 38% (P=0.046) and 48% (P=0.000) of control, respectively. Also diazinon (30 and 60 mg/kg) increased hepatic cell liver lipid peroxidation by 77% (P=0.05) and 280% (P=0.000) of control. The correlations between plasma glucose and hepatic cells TBARS (r2=0.537, P=0.02), between plasma glucose and ChE activity (r2=0.81, P=0.049) and between plasma glucose and hepatic cells GP activity (r2=0.833, P=0.04) were significant. It is concluded that the liver cells are a site of toxic action of diazinon. Diazinon increases glucose release from liver into blood through activation of glycogenolysis and gluconeogenesis as a detoxication non-cholinergic mechanism to overwhelm diazinon-induced toxic stress. The results are in accordance with the hypothesis that OPs are a predisposing factor of diabetes.
Subject
Health, Toxicology and Mutagenesis,Toxicology,General Medicine
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献