Induction of apoptosis in indole-3-carbinol-treated lung cancer H1299 cells via ROS level elevation

Author:

Lim Heui Min1,Park See-Hyoung2ORCID,Nam Myeong Jin1ORCID

Affiliation:

1. Department of Biological Science, Gachon University, Gyeonggi-do, Republic of Korea

2. Department of Bio and Chemical Engineering, Hongik University, Sejong-si, Republic of Korea

Abstract

This study was focused on investigating the anticancer potential of indole-3-carbinol (I3C) against lung cancer H1299 cells via an increase in ROS levels. To investigate the induction of growth arrest and/or cell death in H1299 cells, a cell cycle arrest assay, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick-end labeling (TUNEL) assay, and reactive oxygen species (ROS) detection assay were performed. Through the TUNEL assay, we detected I3C-induced DNA fragmentation. Fluorescence-activated cell sorting (FACS) analysis showed that I3C induced an increase in ROS levels and apoptotic rate in a dose- and time-dependent manner in H1299 cells. Western blotting demonstrated that activated forms of caspase-3, caspase-7, caspase-9, and poly (ADP-ribose) polymerase (PARP) were increased in I3C-treated H1299 cells following treatment with I3C. Furthermore, protein expression levels of FOXO3, bim, bax, and phosphorylated ERK and JNK were increased, while those of pAkt, Bcl-xL, and Bcl-2 were decreased by I3C treatment of H1299 cells. To confirm the relationship between cell apoptosis and ROS generation, H1299 cells were treated with I3C simultaneously with N-acetylcysteine (NAC), and it was shown that ROS levels decreased and viability increased. Moreover, in western blot analysis, expression of anti-apoptotic proteins (thioredoxin1, peroxiredoxin-1, Bcl-2, and Bcl-xL) in I3C-treated cells was evidently downregulated and pro-apoptotic proteins (active ASK1 and cleaved PARP) were upregulated compared to cells co-treated with NAC. The study showed that I3C induced downregulation of ROS regulator proteins and elevation of ROS, thus activating apoptotic signaling cascades in human lung cancer H1299 cells.

Funder

Gachon University

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3