Beclin 1, LC3, and p62 expression in paraquat-induced pulmonary fibrosis

Author:

Xu G1,Wang X1,Yu H1,Wang C123,Liu Y23,Zhao R1,Zhang G1ORCID

Affiliation:

1. Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, People’s Republic of China

2. The People’s Procuratorate of Liaoning Province Judicial Authentication Center, Shenyang, Liaoning, People’s Republic of China

3. Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang, Liaoning, People’s Republic of China

Abstract

Paraquat (PQ) is a highly toxic herbicide to humans. Pulmonary fibrosis is one of the most typical features of PQ poisoning, which develops from several days to weeks after ingestion. However, the mechanism of fibrosis is still unclear. In this study, we aimed to determine expressions of autophagy-related markers Beclin 1, microtubule-associated protein light chain 3 (LC3), and p62 in PQ-poisoned lungs and to explore the role of autophagy in pulmonary fibrosis induced by PQ. We detected markers of lung fibrosis and expressions of autophagy-related protein in the specimens from eight fatal cases of PQ poisoning by hematoxylin and eosin staining, Masson’s trichrome staining, and immunohistochemistry. Based on the staining results of lung fibrosis, these cases were divided into two groups, fibrosis and non-fibrosis groups. The correlation between autophagy protein expressions and pulmonary fibrosis was examined. The results demonstrated that the autophagy-related proteins were significantly expressed in fibrosis group compared with the non-fibrosis group. There was a significantly positive correlation between these protein expressions and severity of lung fibrosis. In conclusion, autophagy dysfunction may be involved in lung fibrogenesis caused by PQ poisoning. This may be a promising clue for understanding the molecular mechanism underlying PQ-induced lung fibrosis and provide evidence for treating fibrosis by regulating the level of autophagy.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3