Protective effects of resveratrol on sepsis-induced DNA damage in the lymphocytes of rats

Author:

Aydın S1,Bacanlı M1,Taner G2,Şahin T3,Başaran AA4,Başaran N1

Affiliation:

1. Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey

2. Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey

3. Department of Surgery, Yenimahalle Government Hospital, Republic of Turkey Ministry of Health, Ankara, Turkey

4. Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey

Abstract

Sepsis, often initiated by an infection, is a state of disrupted inflammatory homeostasis. There is increasing evidence that oxidative stress has an important role in the development of sepsis-induced multiorgan failure. Resveratrol (RV) is a polyphenolic compound found in the skin of red fruits, such as mulberries and red grapes, and in peanuts. RV has been reported to have an antioxidant, antiproliferative, and anti-inflammatory properties in various models. It has also been found to inhibit the proliferation of a variety of human cancer cell lines, including breast, prostate, colon, pancreatic, and thyroid. This study has been undertaken to assess the role of RV on the sepsis-induced oxidative DNA damage in the lymphocytes of Wistar albino rats by the standard and formamidopyrimidine DNA glycosylase (Fpg)-modified comet assays. The parameters of tail length, tail intensity, and tail moment were evaluated for the determination of DNA damage. According to the study, the DNA damage was found to be significantly higher in the sepsis-induced rats when compared with the control rats ( p < 0.05). The parameters were significantly decreased in the RV-treated sepsis-induced group when compared with the sepsis-induced group. The parameters in the sepsis-induced rats were found to be significantly higher in the Fpg-modified comet assay when compared with the standard comet assay ( p < 0.05), and RV treatment decreases the DNA damage in the sepsis-induced rats, suggesting that the oxidative stress is likely to be responsible for DNA damage and RV might have a role in the prevention of sepsis-induced oxidative DNA damage.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3