Long noncoding RNA long intergenic non-protein-coding RNA 173 contributes to nasopharyngeal carcinoma progression by regulating microRNA-765/Gremlin 1 pathway

Author:

Wang Dan1,Jiang Heng1ORCID

Affiliation:

1. Otorhinolaryngologic Department, The Fifth Hospital of Wuhan, Wuhan, China

Abstract

Background Long intergenic non-protein-coding RNA 173 (LINC00173) executes vital functions in various cancers. Nevertheless, its role and expression in nasopharyngeal carcinoma (NPC) have yet to be investigated. Here, we investigated its effects on the malignancy characteristics of NPC and elucidated the potential molecular mechanism of LINC00173 in NPC progression. Methods Quantitative real-time reverse transcription-PCR (qRT-PCR) and immunoblotting were conducted to estimate the LINC00173, microRNA-765 (miR-765), and Gremlin 1 (GREM1) expressions in NPC cells and tissues. Cell counting kit-8 (CCK8), colony formation, and wound healing experiments were done to evaluate the proliferation, growth, and migration of NPC cells, respectively. The tumorous growth of NPC cells in vivo was assessed through the xenograft tumor experiment. Furthermore, the interactions among miR-765, LINC00173, and GREM1 were investigated through bioinformatics analyses, luciferase reporter and RNA immunoprecipitation chip assays. Results An upregulated LINC00173 expression was found in NPC cell lines and tissues. The functional experiments uncovered that its downregulation repressed NPC cell proliferation, growth, and migration. In addition, LINC00173 knockdown hampered the NPC cells’ tumorous growth in vivo. These effects could partially be reversed by downregulating miR-765. GREM1 is a downstream target of miR-765. GREM1 knockdown could repress the proliferation, growth, and migration of NPC cells. Nonetheless, these anti-tumor effects could be abolished by miR-765 downregulation. Mechanistically, LINC00173 increased the expression of GREM1 by binding with miR-765. Conclusions LINC00173 functions as an oncogenic factor by binding with miR-765 to promote the progression of NPC via GREM1 upregulation. This study provides a novel insight into the molecular mechanisms involved in NPC progression.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3