X-ray-induced reproductive dysfunction and differentially expressed piRNAs in male mice

Author:

Liu X12,Chen Q23,Ding X4,Zhao Y23,Zhang K23,Yu P1,Cui F23ORCID,Xue B12

Affiliation:

1. Department of Urology, the Second Affiliated Hospital of Suzhou University, Suzhou, China

2. State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China

3. Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China

4. Department of Urology, Suzhou University, Suzhou, China

Abstract

The effects of X-ray radiation on spermatogenesis, sperm motility, and PIWI-interacting RNAs (piRNAs) in mice were analyzed. Male C57BL/6 J mice were divided into control and two irradiation groups ( n = 9 mice/group). After irradiation of their reproductive regions, the mice were fed for 3 days (irradiation group 1) or 7 days (control and irradiation group 2). The sperm viability, motility, velocity, and motion curve were analyzed. After piRNA expression profiling, quantitative reverse-transcription polymerase chain reaction was conducted for validation. Ionizing radiation led to vessel dilation and congestion, fewer spermatogenic cells, and reduced sperm production compared to the control. At 3 and 7 days postirradiation, the sperm count (grade d) increased while sperm viability and sperm lateral head displacement decreased. At 7 days, the sperm abnormality rate was higher compared to the control. Many piRNAs were differentially expressed after irradiation, including decreased and increased expression of mmu_piR_009082 and mmu_piR_020217, respectively. Downregulated piRNAs were involved in Rap1 signaling, non-homologous end-joining, hedgehog signaling, oxytocin signaling, and cholinergic synapse. Upregulated piRNAs participated in pathways including proteoglycans in cancer, phosphatidylinositol signaling, cGMP-PKG signaling, and stem cell pluripotency regulation. X-ray irradiation inhibited spermatogenesis and increased abnormal sperm rate in mice. piRNA-related signaling pathways may be involved in this process.

Funder

the Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3