Methylation-mediated loss of SFRP2 enhances invasiveness of non–small cell lung cancer cells

Author:

Zhang X1,Rong X1,Chen Y2,Su L3

Affiliation:

1. Department of Respiratory, Shandong Provincial Chest Hospital, Ji’nan, China

2. Department of Internal medicine, The Fourth People’s Hospital of Ji’nan, Ji’nan Clinical School of Taishan Medical College, Ji’nan, China

3. Department of Respiratory, The Fourth People’s Hospital of Ji’nan, Ji’nan Clinical School of Taishan Medical College, Ji’nan, China

Abstract

The malignancy of non–small cell lung cancer (NSCLC) largely results from its invasive manner. Secreted frizzled-related proteins (SFRPs) have been recently found to suppress the invasiveness of some cancers. On the other hand, the methylation of SFRPs increases protein degradation to reduce the activity of SFRPs, resulting in increased tumor cell invasion and cancer metastasis. However, the role of SFRPs in the invasion of NSCLC has not been reported. Here we analyzed the regulation of SFRPs in NSCLC cells and its effects on cell invasion. We found that SFRP2 mRNA was significantly decreased and methylation of SFRP2 gene was significantly increased in NSCLC tissue, compared to the paired adjacent nontumor tissue. Moreover, SFRP2 expression was significantly decreased in NSCLC cell lines. In NSCLC cell lines, the SFRP2 expression would be restored by the demethylation of SFRP2 gene with 5′-aza-deoxycytidine in NSCLC cell lines, at the levels of both mRNA and protein. Thus, the cell invasion would be suppressed. Furthermore, the demethylation of SFRP2 gene appeared to inhibit Zinc Finger E-Box Binding Homeobox 1 (ZEB1) and matrix metallopeptidase 9 (MMP9), two key factors that enhance NSCLC cell invasion. Thus, SFRP2 may inhibit NSCLC invasion by suppressing ZEB1 and MMP9, while its methylation promotes NSCLC invasion.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3