Oxidative stress and DNA damage in utero and embryo implantation of mice exposed to carbon disulfide at peri-implantation

Author:

Yang L1,Zhang B1,Yuan Y1,Li C1,Wang Z1

Affiliation:

1. Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan, People’s Republic of China

Abstract

Carbon disulfide (CS2) has reproductive toxicity but the mechanism remains unclear. The aim of the present study was to investigate the effect of oxidative stress and DNA damage on embryo implantation of mice exposed to CS2 at peri-implantation. CS2 exposure was on gestational day 3 (GD3), GD4, GD5 and GD6, separately, and the number of embryonic day 9 (E9) mouse embryos was obtained. DNA damage of endometrial cells, oxidative stress and 8-hydroxy-2′-deoxyguanosine (8-OH-dG) level in uterus tissues were tested with time series at different end points after exposure. The number of E9 mouse embryos significantly decreased in all CS2 exposure groups, especially on GD4 exposure. The rates of embryo implantation decreased by 43.05%, 63.74%, 60.45% and 47.26% for CS2 exposure on GD3, GD4, GD5 and GD6, respectively. Oxidative stress significantly increased within 24 h and reached the top level at 18 h after exposure. The same time-dependent trend was observed no matter when the exposure happened at peri-implantation. 8-OH-dG significantly increased at 18 h and 24 h after exposure by 893.8% and 647.4%, respectively, when compared with the control. The indexes of DNA damage significantly increased at 6 h after exposure, which appeared earlier than the changes of oxidative stress and 8-OH-dG. Besides, both oxidative stress and DNA damage showed a strong negative correlation with the number of E9 mouse embryos. The present study illustrated that CS2 directly induced DNA damage in endometrial cells and enhanced the action through oxidative stress, both of which were responsible for CS2-induced embryo loss.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3