Diminished amyloid-β uptake by mouse microglia upon treatment with quantum dots, silver or cerium oxide nanoparticles: Nanoparticles and amyloid-β uptake by microglia

Author:

Sikorska K1ORCID,Grądzka I1,Sochanowicz B1,Presz A2,Męczyńska-Wielgosz S1,Brzóska K1ORCID,Kruszewski MK13

Affiliation:

1. Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland

2. Laboratory of Nanostructures, Institute of High Pressure Physics, Warsaw, Poland

3. Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland

Abstract

Alzheimer’s disease (AD) is a chronic neurodegenerative disease leading to progressive dementia in elderly people. The disease is characterized, among others, by formation of amyloid- β (A β) polypeptide plaques in the brain. Although etiology of the disease is not fully understood, recent research suggest that nanomaterials may affect AD development. Here, we described the consequences of exposure of mouse BV-2 microglia to silver nanoparticles (AgNPs, 50 µg/mL), cerium oxide nanoparticles (CeO2NPs, 100 µg/mL), and cadmium telluride quantum dots (CdTeQDs, 3 or 10 µg/mL) in the context of its ability to clear A β plaques. The brain microglial cells play an important role in removing A β plaques from the brain. Cell viability and cycle progression were assessed by trypan blue test and propidium iodide binding, respectively. The uptake of A β and NPs was measured by flow cytometry. Secretion of proinflammatory cytokines was measured with the use of cytometric bead array. A β (0.1 μM) did not affect viability, whereas NPs decreased microglia growth by arresting the cells in G1 phase (CdTeQDs) or in S phase (AgNPs and CeO2NPs) of cell cycle. The uptake of A β was significantly reduced in the presence of AgNPs and CeO2NPs. In addition, the least toxic CeO2NPs induced the release of proinflammatory cytokine, tumor necrosis factor α. In summary, each of the NPs tested affected either the microglia phagocytic activity (AgNPs and CeO2NPs) and/or its viability (AgNPs and CdTeQDs) that may favor the occurrence of AD and accelerate its development.

Funder

National Science Centre of Poland

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3