Affiliation:
1. Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
2. Laboratory of Nanostructures, Institute of High Pressure Physics, Warsaw, Poland
3. Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disease leading to progressive dementia in elderly people. The disease is characterized, among others, by formation of amyloid- β (A β) polypeptide plaques in the brain. Although etiology of the disease is not fully understood, recent research suggest that nanomaterials may affect AD development. Here, we described the consequences of exposure of mouse BV-2 microglia to silver nanoparticles (AgNPs, 50 µg/mL), cerium oxide nanoparticles (CeO2NPs, 100 µg/mL), and cadmium telluride quantum dots (CdTeQDs, 3 or 10 µg/mL) in the context of its ability to clear A β plaques. The brain microglial cells play an important role in removing A β plaques from the brain. Cell viability and cycle progression were assessed by trypan blue test and propidium iodide binding, respectively. The uptake of A β and NPs was measured by flow cytometry. Secretion of proinflammatory cytokines was measured with the use of cytometric bead array. A β (0.1 μM) did not affect viability, whereas NPs decreased microglia growth by arresting the cells in G1 phase (CdTeQDs) or in S phase (AgNPs and CeO2NPs) of cell cycle. The uptake of A β was significantly reduced in the presence of AgNPs and CeO2NPs. In addition, the least toxic CeO2NPs induced the release of proinflammatory cytokine, tumor necrosis factor α. In summary, each of the NPs tested affected either the microglia phagocytic activity (AgNPs and CeO2NPs) and/or its viability (AgNPs and CdTeQDs) that may favor the occurrence of AD and accelerate its development.
Funder
National Science Centre of Poland
Subject
Health, Toxicology and Mutagenesis,Toxicology,General Medicine
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献