Affiliation:
1. Department of Environment Health, School of Public Health, Fudan University, The Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
2. Department of Cardiology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
Abstract
The study is to explore the toxicity of organic extracts and water-soluble fraction of fine particles on human umbilical vein endothelial cells (HUVECs). The exposure doses were 100, 200 and 400 μg/ml, respectively, for two kinds of fractions. Moreover, atorvastatin was used for intervention study. HUVECs were stimulated by 400 μg/ml organic and water soluble extracts, respectively, immediately followed by treatment with atorvastatin in concentrations of 0.1 μmol/L, 1 μmol/L and 10 μmol/L, respectively. Cell viability, malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), reactive oxygen species (ROS) and the expression of interleukin-6 beta (IL-6), tumor necrosis factor-α (TNF-α), endothelin-1 and P-selectin were determined in cells. The results showed that MDA and ROS increased in HUVECs after exposed to organic extracts and water-soluble fraction, whereas cell viability, NO and SOD decreased. The mRNA expression of IL-6, TNF-α, endothelin-1 (ET-1) and P-selectin increased after exposed to different fractions. Meanwhile, at the same exposure dose, water-soluble fraction caused more significant increase of MDA, IL-6, TNF-α and P-selectin and decrease of cell viability and NO when compared to organic extracts. Compared to no atorvastatin group, the levels of MDA, ROS and the expression of IL-6, TNF-α, ET-1 and P-selectin decreased in HUVECs in adding atorvastatin group, but cell viability, NO and SOD increased, which indicated that atorvastatin attenuated fine particle-induced inflammatory response, oxidative stress and endothelial damage. The results hinted that the inflammatory response, oxidative stress and endothelial dysfunction might be the mechanisms of cardiovascular injury induced by different fractions of ambient fine particles.
Subject
Health, Toxicology and Mutagenesis,Toxicology,General Medicine
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献