Exposure to triptolide affects follicle development in NIH mice

Author:

Zeng Y1,Sun H1,Li Y2,Shao M3,Han P1,Yu X3,He L1,Xu Y1,Li S1

Affiliation:

1. Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China

2. Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China

3. Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China

Abstract

Triptolide (TPL) is a main active compound isolated from Tripterygium wilfordii Hook f. Despite its positive therapeutic effect, the female reproductive toxicity of TPL is still the bottleneck of clinical application. The study was designed to investigate the adverse effects on mice ovary and underlying mechanism of TPL. Adult female NIH mice were treated with two therapeutic doses of TPL (25 and 50 μg/kg/d) for 50 days, respectively. Mice estrous cycle was detected by vaginal cytology method. Half mice from each group were selected randomly to perform superovulation. Quality and quantity of ovulated eggs were evaluated. Other mice from each group were executed for morphological study. Ovarian histological sections were stained by H&E staining for ovarian pathologic detection and follicular counts. Apoptotic granulosa cell (GC) was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Endoplasmic reticulum (ER) stress-related proteins and antiapoptotic X-linked inhibitor of apoptosis protein (XIAP) were detected by immunohistochemical method. Two doses of TPL resulted in estrous cycle disorder and follicles in development reservoir impairment. Quality and quantity of mice ovulated eggs significantly decreased after TPL treatment. Ovarian pathologic examination revealed TPL-induced TUNEL-positive GCs increase and ER stress–related proteins (78-kDa glucose-regulated protein, p-protein kinase-like endoplasmic reticulum kinase, p-eukaryotic initiation factor 2α, and CCAAT/enhancer binding protein homologous protein) expression upregulation. Meanwhile, the expression of antiapoptosis protein XIAP in mice ovary was obviously inhibited by TPL. Our results may demonstrate that therapeutic doses of TPL can injure ovary function, but there is no difference between high-dose and low-dose groups. GCs apoptosis by ER stress pathway and antiapoptotic function impairment may partly mediate TPL-induced ovary toxicity.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3