Arsenic-induced toxicity: effect on protein composition in sciatic nerve

Author:

Vahidnia A1,Romijn F2,Tiller M,van der Voet G B,de Wolff F A3

Affiliation:

1. Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands; Department of Clinical Pharmacy and Toxicology, L1-p, Albinusdreef 2, P.O. Box 9600, 2300 RC Leiden, The Netherlands;

2. Department of Clinical Chemistry, Leiden University Medical Center, Leiden, The Netherlands

3. Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands

Abstract

Exposure to arsenic compounds may lead to skin and lung cancer and various disorders such as vascular disease and peripheral neuropathy in humans. Peripheral arsenic neurotoxicity has been demonstrated clinically and in electrophysiological studies. Patients intoxicated with arsenic show neurological symptoms in their feet and hands. These patients show significantly lower nerve conduction velocities (NCVs) in their peripheral nerves in comparison with controls. The mechanism of arsenic peripheral nervous system (PNS) toxicity, however, has never been described before. This is the first study to investigate the toxicity of arsenic on the PNS. Male Wistar rats were exposed to arsenite given as a single dose i.v. After sacrifice, sciatic nerves were excised and the protein composition was analysed. Protein analysis of sciatic nerves showed disappearance of neurofilament and fibroblast proteins in rats treated with arsenite doses of 15 and 20 mg/kg in comparison with the control groups. Some fibroblast protein bands had disappeared in the 20-mg/kg dose group. The analysed neurofilament-M and-L proteins decreased dose dependency over time. arsenic affects the composition of proteins in the rat sciatic nerve, especially the neurofilaments. The reduction of signals in Western blot analysis reveals changes in cytoskeletal composition, which may well lead to neurotoxic effects in vivo.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3