SIRT4 prevents excitotoxicity via modulating glutamate metabolism in glioma cells

Author:

Yalçın G Dönmez1ORCID,Colak M1

Affiliation:

1. Faculty of Medicine, Department of Medical Biology, Adnan Menderes University, Aydin, Turkey

Abstract

Excitotoxicity is the presence of excessive glutamate, which is normally taken up by glutamate transporters on astrocytes. Glutamate transporter 1 (GLT-1) is the major transporter on glia cells clearing more than 90% of the glutamate. Sirtuin 4 (SIRT4) is a mitochondrial sirtuin which is expressed in the brain. Previously, it was shown that loss of SIRT4 leads to a more severe reaction to kainic acid, an excitotoxic agent, and also decreased GLT-1 expression in the brain. In this study, we aimed to investigate whether overexpression of SIRT4 is protective against excitotoxicity in glia cells. We overexpressed SIRT4 in A172 glioma cell line and treated with kainic acid in order to induce excitotoxicity. We observed that SIRT4 overexpression increased the cell viability after kainic acid treatment. In addition, reduced glutamate was detected in glutamate assay with overexpression of SIRT4 after kainic acid treatment since SIRT4 decreased cell death by preventing excitotoxicity. Our results show that overexpression of SIRT4 increased the protein levels of GLT-1 and glutamate dehydrogenase (GDH) after kainic acid (KA) treatment so that excess glutamate can be absorbed. However, overexpression of SIRT4 decreased glutamine synthetase (GS) levels. These results demonstrate that, by inhibiting GS, SIRT4 prevents glutamine formation, which will be converted to glutamate in neurons. SIRT4 prevents excitotoxicity via upregulating glutamate metabolism. Finally, our results may show that SIRT4 might prevent excitotoxicity and related cell death via reducing GS expression and upregulating GLT-1 and GDH levels. Therefore, it is important to develop therapeutics against excitotoxicity through SIRT4-related pathways in the cell.

Funder

Turkish Scientific and Research Council

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3