The managed immune system: protecting the womb to delay the tomb

Author:

Dietert Rodney R1,Piepenbrink Michael S2

Affiliation:

1. Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA,

2. Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA

Abstract

The developing immune system serves as a novel target for disruption by environmental chemicals and drugs, and one that can significantly influence later-life health risks. Specific immune maturational events occur during critical windows of pre- and early postnatal development that are not effectively modeled using adult exposure-assessment or general developmental toxicity screens. The range of postnatal health risks linked to developmental immunotoxicity (DIT) is influenced, in part, by the natural progression of prenatal-neonatal development. In this progression, the pregnancy itself imposes a Th2-bias in utero, and this produces a delay in the acquisition of Th1 functional capacity in the newborn. The status of Th1 regulatory and Th17 populations may also be important in immune function/dysfunction considerations. The necessary shift from a Th2 preferred capacity in late gestation to a more balance functional capacity in the neonate can be disrupted by xenobiotics leaving the child with increased vulnerability to a range of potential diseases. Knowledge of environmental factors that facilitate effective immune functional maturation as well as those xenobiotics capable of disrupting the process is important in strategies to reduce the incidence of diseases such as childhood asthma. Because hormesis has been shown to be an important factor in modulation of the adult immune system, it becomes even more important to understand potentially opposing dose-response effects for the immune system of the fetus, neonate, and juvenile. The direct linkage between immune dysfunction and chronic disease has become abundantly apparent in recent years. Therefore, a more comprehensive and effective approach for the protection of the developing immune system can help to reduce the incidence of later-life chronic diseases.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3