Oxidative stress and inflammatory responses of rat following acute inhalation exposure to iron oxide nanoparticles

Author:

Srinivas A1,Rao P Jaganmohan1,Selvam G1,Goparaju A1,Murthy Balakrishna P1,Reddy Neelakanta P2

Affiliation:

1. Department of Toxicology, International Institute of Biotechnology and Toxicology (IIBAT), Padappai, Tamil Nadu, India

2. Bio-organic Chemistry Laboratory, Central Leather Research Institute (CLRI), Adyar, Chennai, India

Abstract

In this research, we investigated the toxicity responses of rat following a continuous 4 h inhalation exposure of only the head and nose to iron oxide nanoparticles (Fe3O4 NPs, size = 15–20 nm). The rats for the investigation were exposed to a concentration of 640 mg/m3 Fe3O4 NPs. Markers of lung injury and proinflammatory cytokines (interleukin-1β, tumor necrosis factor-α, and interleukin-6) in bronchoalveolar lavage fluid (BALF) and blood, oxidative stress in lungs, and histopathology were assessed on 24 h, 48 h, and 14 days of postexposure periods. Our results showed a significant decrease in the cell viability, with the increase in the levels of lactate dehydrogenase, total protein, and alkaline phosphatase in the BALF. Total leukocyte count and the percentage of neutrophils in BALF increased within 24 h of postexposure. Immediately following acute exposure, rats showed increased inflammation with significantly higher levels of lavage and blood proinflammatory cytokines and were consistent throughout the observation period. Fe3O4 NPs exposure markedly increased malondialdehyde concentration, while intracellular reduced glutathione and antioxidant enzyme activities were significantly decreased in lung tissue within 24-h postexposure period. On histological observation, the lung showed an early activation of pulmonary clearance and a size-dependant biphasic nature of the Fe3O4 NPs in causing the structural alteration. Collectively, our data illustrate that Fe3O4 NPs inhalation exposure may induce cytotoxicity via oxidative stress and lead to biphasic inflammatory responses in Wistar rat.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3