Exosome-derived miR-2682-5p suppresses cell viability and migration by HDAC1-silence-mediated upregulation of ADH1A in non-small cell lung cancer

Author:

Mao Guangxian1,Mu Zhimin1,Wu Da1ORCID

Affiliation:

1. Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China

Abstract

Introduction: Increasing evidence indicated that miR-2682-5p acted as a tumor suppressor in various cancers. The current study aimed to investigate the biological function of exosomal miR-2682-5p in non-small cell lung cancer (NSCLC). Methods: The expression of miR-2682-5p in NSCLC tissues and adjacent non-tumor tissues, NSCLC cell lines and human embryonic lung fibroblast, as well as serum and serum exosomes of NSCLC patients and healthy donors was detected by RT-qPCR. The effects of miR-2682-5p on the viability, migration, and apoptosis of NSCLC cells were detected by CCK-8, Transwell, and flow cytometry assays. Dual-luciferase reporter gene and RNA immunoprecipitation assays were used to evalutate the relationship between miR-2682-5p and HDAC1. Results: Low expressed miR-2682-5p was found in tumor tissues, cell lines, serum, and serum exosomes of NSCLC patients. MiR-2682-5p overexpression suppressed NSCLC cell viability and migration and promoted apoptosis, while miR-2682-5p knockdown showed the opposite results. Furthermore, exosomes from healthy donor serum inhibited NSCLC cell viability and migration and promoted apoptosis. Dual-luciferase reporter gene and RNA immunoprecipitation assays verified that HDAC1 was a target of miR-2682-5p. HDAC1 overexpression abolished the effects of miR-2682-5p mimic on NSCLC cell viability, migration, and apoptosis. Chromatin immunoprecipitation assay indicated that HDAC1 bound to the promoter region of ADH1A. Upregulation of ADH1A counteracted the effects of HDAC1 overexpression on NSCLC cell viability, migration, and apoptosis. Conclusion: Taken together, exosomal miR-2682-5p inhibited NSCLC cell viability and migration and promoted apoptosis by the HDAC1/ADH1A axis, and this result might provide a novel therapeutic target for NSCLC.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3