Lipid emulsion attenuates apoptosis induced by a toxic dose of bupivacaine in H9c2 rat cardiomyoblast cells

Author:

Ok S-H1,Yu J2,Lee Y2,Cho H2,Shin I-W1,Sohn J-T1

Affiliation:

1. Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University, School of Medicine and Gyeongsang National University Hospital, Jinju, Korea

2. Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju, Korea

Abstract

The goal of this in vitro study was to investigate the effect of lipid emulsion on apoptosis induced by a toxic dose of bupivacaine (BPV) in H9c2 rat cardiomyoblast cell lines. The effect of lipid emulsion on the decreased cell viability and count induced by BPV or mepivacaine (MPV) in the H9c2 cells was assessed using an 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide assay or a cell count assay. The effect of BPV or lipid emulsion combined with BPV on cleaved caspase 3, caspase 8, and Bax in H9c2 cells was investigated using Western blotting. A terminal deoxynucleotidyl transferase dUTP2′-deoxyuridine 5′-triphosphate nick end-labeling (TUNEL) assay was performed to detect apoptosis of H9c2 cells treated with BPV alone or lipid emulsion combined with BPV. The magnitude of lipid emulsion-mediated attenuation of decreased cell viability induced by BPV was higher than that of lipid emulsion-mediated attenuation of decreased cell viability induced by MPV. Lipid emulsion attenuated the increases in cleaved caspase 3, caspase 8 and Bax induced by BPV. Lipid emulsion attenuated the increases in TUNEL-positive cells induced by BPV. These results suggest that lipid emulsion attenuates a toxic dose of BPV-induced apoptosis via inhibition of the extrinsic and intrinsic apoptotic pathways. The protective effect of lipid emulsion may be partially associated with the relatively high lipid solubility of BPV.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3