Performance of relaxed iterative methods for image deblurring problems

Author:

Yun Jae H1ORCID

Affiliation:

1. Department of Mathematics, College of Natural Science, Chungbuk National University, Cheongju, Korea

Abstract

In this paper, we consider performance of relaxation iterative methods for four types of image deblurring problems with different regularization terms. We first study how to apply relaxation iterative methods efficiently to the Tikhonov regularization problems, and then we propose how to find good preconditioners and near optimal relaxation parameters which are essential factors for fast convergence rate and computational efficiency of relaxation iterative methods. We next study efficient applications of relaxation iterative methods to Split Bregman method and the fixed point method for solving the L1-norm or total variation regularization problems. Lastly, we provide numerical experiments for four types of image deblurring problems to evaluate the efficiency of relaxation iterative methods by comparing their performances with those of Krylov subspace iterative methods. Numerical experiments show that the proposed techniques for finding preconditioners and near optimal relaxation parameters of relaxation iterative methods work well for image deblurring problems. For the L1-norm and total variation regularization problems, Split Bregman and fixed point methods using relaxation iterative methods perform quite well in terms of both peak signal to noise ratio values and execution time as compared with those using Krylov subspace methods.

Funder

National Research Foundation of Kore

Publisher

SAGE Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3