Attention graph: Learning effective visual features for large-scale image classification

Author:

Cui Xuelian1,Zhang Zhanjie2,Zhang Tao2ORCID,Yang Zhuoqun2,Yang Jie3

Affiliation:

1. Wuxi XINJE Electric Co.,Ltd, Wuxi, China;

2. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China;

3. Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China

Abstract

In recent years, the research of deep learning has received extensive attention, and many breakthroughs have been made in various fields. On this basis, a neural network with the attention mechanism has become a research hotspot. In this paper, we try to solve the image classification task by implementing channel and spatial attention mechanism which improve the expression ability of neural network model. Different from previous studies, we propose an attention module consisting of channel attention module (CAM) and spatial attention module (SAM). The proposed module derives attention graphs from channel dimension and spatial dimension respectively, then the input features are selectively learned according to the importance of the features. Besides, this module is lightweight and can be easily integrated into image classification algorithms. In the experiment, we combine the deep residual network model with the attention module and the experimental results show that the proposed method brings higher image classification accuracy. The channel attention module adds weight to the signals on different convolution channels to represent the correlation. For different channels, the higher the weight, the higher the correlation which required more attention. The main function of spatial attention is to capture the most informative part in the local feature graph, which is a supplement to channel attention. We evaluate our proposed module based on the ImageNet-1K and Cifar-100 respectively. Through a large number of comparative experiments, our proposed model achieved outstanding performance.

Funder

Tao Zhang

Publisher

SAGE Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CASolarNet: Channel Attention EfficientNet-based Model for Solar Panel Dust Detection;2024 4th International Conference on Emerging Smart Technologies and Applications (eSmarTA);2024-08-06

2. Rethink arbitrary style transfer with transformer and contrastive learning;Computer Vision and Image Understanding;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3