Node coverage optimization algorithm for wireless sensor networks based on improved grey wolf optimizer

Author:

Wang Zhendong1ORCID,Xie Huamao1,Hu Zhongdong1,Li Dahai1,Wang Junling1,Liang Wen1

Affiliation:

1. College of Information Engineering, Jiangxi University of Science and Technology, Jiangxi, China

Abstract

Aiming at the problem of wireless sensor network node coverage optimization with obstacles in the monitoring area, based on the grey wolf optimizer algorithm, this paper proposes an improved grey wolf optimizer (IGWO) algorithm to improve the shortcomings of slow convergence, low search precision, and easy to fall into local optimum. Firstly, the nonlinear convergence factor is designed to balance the relationship between global search and local search. The elite strategy is introduced to protect the excellent individuals from being destroyed as the iteration proceeds. The original weighting strategy is improved, so that the leading wolf can guide the remaining grey wolves to prey in a more reasonable way. The design of the grey wolf’s boundary position strategy and the introduction of dynamic variation strategy enrich the population diversity and enhance the ability of the algorithm to jump out of local optimum. Then, the benchmark function is used to test the convergence performance of genetic algorithm, particle swarm optimization, grey wolf optimizer, and IGWO algorithm, which proves that the convergence performance of IGWO algorithm is better than the other three algorithms. Finally, the IGWO algorithm is applied to the deployment of wireless sensor networks with obstacles (rectangular obstacle, trapezoidal obstacle and triangular obstacles). Simulation results show that compared with GWO algorithm, IGWO algorithm can effectively improve the coverage of wireless sensor network nodes and obtain higher coverage rate with fewer nodes, thereby reducing the cost of deploying the network.

Funder

The Education Department of Jiangxi Province

Innovation Designated Fund for Graduate Student of Jiangxi Province

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Publisher

SAGE Publications

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3