Improving the modeling and forecasting of fuel selling price using the radial basis function technique: A case study

Author:

Aman Zineb1ORCID,Ezzine Latifa2,El Bahi Younes Fakhradine1,EL Moussami Haj1

Affiliation:

1. Mechanics & Integrated Engineering, ENSAM School, Moulay Ismail University, Meknes, Morocco

2. Modeling, Control Systems and Telecommunications, Moulay Ismail University, EST-Meknes, Morocco

Abstract

Recently, the petroleum sector in Morocco has been liberalized which has a significant effect for petroleum product distributors. Since the beginning of December 2015, fuel prices are freely determined. This event presents many constraints affecting the balance of the sector plus the competition between its economic players. The lack of accompanying measures by the State makes this vital reform for public finances that stop subsidizing the price of gasoline vulnerable. As all fuel products are imported, we will be interested in the evolution by making forecasts of the price of fuels in the Moroccan market. In this context, our paper aims mainly to study the selling price of diesel and gasoline in order to provide precise forecasts to the company and to respect the permissible error margin of 3%. To this end, we worked with a widely used approach for price forecasting: artificial neural networks technique (radial basis function). Recently, it is suggested to work with artificial neural networks in forecasting field as an alternative to the traditional linear methods. We developed a radial basis function network to come up with conclusions in terms of the superiority in forecasting performance. Consequently, the radial basis function technique proved its strength manifested in the error that was further minimized: 1.95% instead of 2.85% for autoregressive integrated moving average (ARIMA) model used in our previous work. The error is further minimized by applying radial basis function technique.

Publisher

SAGE Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3