Affiliation:
1. Electrical Engineering Department, National Institute of Technology Silchar, India
Abstract
This paper deals with (i) damping improvement and (ii) energy management of a DC microgrid for improvement of its stability. The direct current (DC) microgrid has a solar-photovoltaic system as a renewable source and fuel cell-battery combination as a backup system to supply power to constant power loads (CPLs). The presence of CPLs in a DC microgrid makes the stability problem more challenging since the negative impedance characteristics of CPLs bring instability into the system. A control approach using interconnection and damping assignment-passivity based control (IDA-PBC) is proposed in this paper to address both the objectives. The proposed control approach provides an efficient energy management, the required damping and also maintains the stability by making the system passive. The tuning parameters of the control laws are adapted incorporating the state of charge (SoC) for the effective energy management. In addition, an integral action is added with the proposed control laws to eliminate the steady-state error in the voltage level of the DC bus and load bus. The proposed IDA-PBC control along with an integral action is compared with four other control approaches, and reveals its better performances. The MATLAB/Simulink results show that the proposed control technique provides better responses in terms of providing damping and effective energy management.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献