Affiliation:
1. School of Power and Mechanical Engineering, Wuhan University, China
2. School of Automation, Huazhong University of Science and Technology, Wuhan, China
Abstract
In this paper, a new kind of intermittent control is proposed to study consensus problems of multi-agent systems with second-order dynamics. In particular, we consider the case that the information transmission occurs at sampling instants and the velocity information is not available for feedback. The proposed control only regulates the velocity of agents in a given sequence of disconnected time intervals, called activated intervals, after sampling instants. Remarkably, both the sampling and activated intervals are not required to be identical. By adopting algebraic graph theory and nonnegative matrix, some sufficient conditions are obtained for guaranteeing the consensus of the multi-agent systems under the switching topology. Finally, the numerical examples are included to illustrate the theoretical results.
Funder
National Natural Science Foundation of China