Gaussian mixture model sample selection strategy–based active semi-supervised soft sensor for industrial processes

Author:

Luo Xing1ORCID,Lei Qi1ORCID,Wang Huirui1

Affiliation:

1. School of Automation, Central South University, China

Abstract

Soft sensors have become reliable tools for estimating difficult-to-measure target variables in modern industrial processes. In order to make full use of labeled and unlabeled samples, an active semi-supervised soft sensor modeling method is proposed, which combines active learning and semi-supervised learning to maximize model performance and minimize the laboratory analysis cost of expanding the labeled sample data set. First, manifold regularization is introduced into the deep extreme learning machine (DELM) algorithm to form a semi-supervised DELM that improves the performance of a model trained with unlabeled samples. Then, considering non-Gaussian processes and the error information between the predicted and true values, an active sample selection strategy based on error Gaussian mixture model is developed. Using this strategy, the most uncertain and representative unlabeled samples are selected for labeling, and thereby expanding the labeled sample data set. Finally, the effectiveness of the proposed method is verified using industrial debutanizer process data.

Funder

National Natural Science Foundation of China

Central South University Research Programme of Advanced Interdisciplinary Studies

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3