Robust adaptive dynamic programming based online tracking control algorithm for real wheeled mobile robot with omni-directional vision system

Author:

Luy Nguyen Tan1

Affiliation:

1. Industrial University of Ho Chi Minh City, Vietnam

Abstract

This paper proposes a new method to design an online robust adaptive dynamic programming algorithm (RADPA) for a wheeled mobile robot which is equipped with an omni-directional vision system. To integrate kinematic and dynamic controllers into the unique controller, we transform the strict feedback system dynamics into tracking error dynamics. Then, we propose a control scheme which uses only one neural network rather than three proposed in the actor-critic-based control schemes for the two-player zero-sum game problem. A neural network weight update law is designed for approximating the solution of the Hamilton–Jacobi–Isaacs equation without knowing knowledge of internal system dynamics. To implement the scheme, we propose the online RADPA, in which control and disturbance laws are updated simultaneously in an iterative loop. The convergence and stability of the online RADPA are proven by Lyapunov techniques. Simulations and experiments on a wheeled mobile robot testbed are carried out to verify the effectiveness of the proposed algorithm.

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3