Virtual exoskeleton-driven uncalibrated visual servoing control for mobile robotic manipulators based on human–robot–robot cooperation

Author:

Ji Peng1,Zeng Hong1,Song Aiguo1,Yi Ping1,Xiong PengWen2,Li Huijun1

Affiliation:

1. School of Instrument Science and Engineering, Southeast University, Nanjing, China

2. Information Engineering School, Nanchang University, Nanchang, China

Abstract

This paper presents an uncalibrated visual servoing control system based on the human–robot–robot cooperation (HRRC). In case of malfunctions of the joint sensors of a robotic manipulator, the proposed system enables the mobile robot to continue operating the manipulator to complete the task that requires careful handling. With the aid of a virtual exoskeleton, an operator may use a human–computer interaction (HCI) device to guide the malfunctioning manipulator. During the guiding process, the virtual exoskeleton serves as a connector between the HCI device and the manipulator. However, when using the HCI device to guide the virtual exoskeleton, there could be a risk of a large-residual problem at any time caused by non-uniform guiding. To solve this problem, a residual switching algorithm (RSA) has been proposed that can identify whether the residual should be calculated based on the motion characteristics of the artificial guiding, reducing the computational cost and ensuring the tracking stability. To enhance the virtual exoskeleton’s ability to drive the manipulator, a multi-joint fuzzy driving controller has been proposed, which can drive the corresponding joint of the manipulator in accordance with an offset vector between the virtual exoskeleton and the manipulator. Lastly, the guiding experiments have verified that, compared with the contrast algorithm, the proposed RSA has a better tracking performance. A peg-in-hole assembly experiment has shown that the proposed control system can assist the operator to control efficiently the robotic manipulator with malfunctioning joint sensors.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3