Temperature and concentration control of exothermic chemical processes in continuous stirred tank reactors

Author:

Vlahakis Eleftherios1ORCID,Halikias George1

Affiliation:

1. Research Centre for Systems and Control, City, University of London, UK

Abstract

Exothermic chemical reaction taking place in continuous stirred tank reactor is considered. Heat release from the chemical reaction, non-linear dynamic behavior of the process and uncertainty in parameters are the main factors motivating the use of robust control design. Viewing temperature and molar concentration as variables both accessible in real time, PI and optimal state-feedback controllers driven by temperature and concentration error signals are proposed to regulate the system over reactor’s steady-state working points by counteracting undesired disturbances. Since access to concentration value has proved beneficial for the reactor’s performance, estimation techniques are examined to compensate for the problematic nature of the concentration’s measurement. A linear reduced-order observer is first proposed to estimate the concentration value using temperature measurements. In addition, assuming concentration measurement is available with a relatively short delay via sample analysis, a linear and non-linear discrete-time predictor is constructed to estimate the concentration’s real-time value. A linear combination of the two estimation schemes (observer, predictor) is proposed resulting in a combined estimator, in which the emphasis between the two individual schemes can be controlled via a scalar parameter. The work presented in this paper was supported by the GLOW project – New weather-stable low gloss powder coatings based on bifunctional acrylic solid resins and nanoadditives – as part of the development of novel and efficient processing technologies regarding the production of new families of powder coatings, responding to industrial requirements for quality improvement at lower cost and shorter development cycles.

Funder

seventh framework programme

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3