Multi-lagged-input information enhancing quantized iterative learning control

Author:

Zhang Huimin1,Chi Ronghu1ORCID

Affiliation:

1. School of Automation & Electronics Engineering, Qingdao University of Science & Technology, PRC

Abstract

Quantization is a significant technique in network control to save limited bandwidth. In this work, two new multi-lagged-input-based quantized iterative learning control (MLI-QILC) methods are proposed by using output quantization and error quantization, respectively. The multi-lagged-input iterative dynamic linearization method (MLI-IDL) is introduced to build a linear data model of nonlinear systems using additional control inputs in lagged time instants and multiple parameters where the condition of nonzero input change is not required any longer. The MLI-QILC is proposed by designing two new objective functions utilizing the quantized data of the system outputs and tracking errors, respectively. With rigorous analysis, it is shown that the proposed MLI-QILC with output quantization guarantees that the tracking error converges to a bound which is related to the quantization density and the bound of the desired trajectory. Furthermore, an asymptotic convergence can be achieved for the proposed MLI-QILC method with error quantization. The theoretical results are verified by simulations.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3