Precise variable spraying system based on improved genetic proportional-integral-derivative control algorithm

Author:

Xu Yanlei12ORCID,Wang Xindong1,Zhai Yuting1,Li ChenXiao1,Gao Zongmei2

Affiliation:

1. College of Information Technology, JiLin Agricultural University, China

2. Department of Biological Systems Engineering, Centre for Precision and Automated Agricultural Systems, Washington State University, USA

Abstract

Currently, the most efficient method of resolving the pollution problem of weed management is by using variable spraying technology. In this study, an improved genetic proportional-integral-derivative control algorithm (IGA-PID) was developed for this technology. It used a trimmed mean operator to optimize the selection operator for an improved searching rate and accuracy. An adaptive crossover operator and mutation operator were constructed for a rapid convergence speed. The weed density detection was performed through an image acquisition and processing subsystem which was capable of determining the spraying quantity. The variable spraying control sub-system completed variable spraying operation. The performance of the system was evaluated by simulations and field tests, and compared with conventional methods. The simulation results indicated that the parameters of the overshoot (1.25%), steady-state error (1.21%) and the adjustment time (0.157s) of IGA-PID were the lowest when compared with the standard algorithms. Furthermore, the field validation results showed that the system with the proposed algorithm achieved the optimal performance with spraying quantity error being 2.59% and the respond time being 3.84s. Overall, the variable spraying system based on an IGA-PID meets the real-time and accuracy requirements for field applications which could be helpful for weed management in precise agriculture.

Funder

National Natural Science Foundation of China

Education Department of Jilin Province

Department of Science and Technology of Jilin Province

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3