Experimental verification of lithium-ion battery prognostics based on an interacting multiple model particle filter
Author:
Affiliation:
1. College of Mathematics and Informatics, Digital Fujian Internet-of-Things Laboratory of Environmental Monitoring, Fujian Normal University, China
2. NARI Technology Co., Ltd., China
3. CALCE, University of Maryland, USA
Abstract
Funder
Project of Fujian Provincial Educational Research for Young and Middle-aged Teachers
Natural Science Foundation of Fujian Province
National Natural Science Foundation of China
Publisher
SAGE Publications
Subject
Instrumentation
Link
http://journals.sagepub.com/doi/pdf/10.1177/0142331220961576
Reference39 articles.
1. State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter
2. Interacting multiple model particle filter
3. State-of-life prognosis and diagnosis of lithium-ion batteries by data-driven particle filters
4. Factors that affect cycle-life and possible degradation mechanisms of a Li-ion cell based on LiCoO2
5. Identify capacity fading mechanism in a commercial LiFePO4 cell
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A novel remaining useful life prediction method based on gated recurrent unit network optimized by tunicate swarm algorithm for lithium-ion batteries;Transactions of the Institute of Measurement and Control;2024-07-24
2. A novel prognostic method for degrading devices with nonlinear degradation processes indexed by both continuous and discrete time scales;Transactions of the Institute of Measurement and Control;2024-07-23
3. A Remaining Useful Life Indirect Prediction Method for Lithium-Ion Batteries Based on SA-DBN;Journal of The Electrochemical Society;2024-05-01
4. Particle Flow Filter: An Ingenious Method to Predict the Remaining Useful Life of Lithium-Ion Batteries;2023 Global Reliability and Prognostics and Health Management Conference (PHM-Hangzhou);2023-10-12
5. Research Progress of Battery Life Prediction Methods Based on Physical Model;Energies;2023-04-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3