Intelligent fault classification of air compressors using Harris hawks optimization and machine learning algorithms

Author:

Afia Adel12ORCID,Gougam Fawzi2,Rahmoune Chemseddine2,Touzout Walid2,Ouelmokhtar Hand2,Benazzouz Djamel2

Affiliation:

1. Department of Mechanical and Process Engineering, Faculty of Mechanical Engineering and Process Engineering, Houari Boumediene University of Science and Technology, Algeria

2. Solid Mechanics and Systems Laboratory (LMSS), Department of Mechanical Engineering, University of M’Hamed Bougara Boumerdes, Algeria

Abstract

Due to their complexity and often harsh working environment, air compressors are inevitably exposed to a variety of faults and defects during their operation. Thus, condition monitoring is critically required for early fault recognition and detection to avoid any type industrial failures. In this paper, an intelligent algorithm for reciprocating air compressor fault diagnosis is developed using real-time acoustic signals acquired from an air compressor with one healthy and seven different faulty states such as leakage inlet valve (LIV), leakage outlet valve (LOV), non-return valve (NRV), piston ring, flywheel, rider-belt and bearing defects. The proposed algorithm mainly consists of three steps: feature extraction, selection, and classification. For feature extraction, experimental acoustic signals are decomposed using maximal overlap discrete wavelet packet transform (MODWPT) by six levels into 64 wavelet coefficients (nodes). Thereafter, time domain features are calculated for each node to build each air compressor’s health state feature matrix. Each feature matrix dimension is reduced by selecting the most useful features using Harris hawks optimization (HHO) in the feature selection step. Finally, for feature classification, selected features are used as inputs for random forest (RF), ensemble tree (ET) and K-nearest neighbors (KNN) to detect, identify, and classify the compressor health states with high classification accuracy. Comparative studies with several feature extraction and selection methods prove the proposed approach’s efficiency in detecting, identifying, and classifying all air compressor faults.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3