Robust fractional-order PID controller assisted by active disturbance rejection control for the first-order plus time-delay systems

Author:

Zheng Weijia1ORCID,Li Xiaorong1,Chen YangQuan2,Wu Ze-Hao3,Wang Xiaohong4

Affiliation:

1. School of Mechatronic Engineering and Automation, Guangdong Provincial Key Laboratory of Industrial Intelligent Inspection Technology, Foshan University, China

2. School of Engineering, University of California Merced, USA

3. School of Mathematics and Big Data, Foshan University, China

4. School of Automation Science and Engineering, South China University of Technology, China

Abstract

Time-delay characteristics of various industrial processes may degrade the stability and dynamic performance of the control systems. Aiming at the problems of the existing methods in dealing with the time delay plant, a modified fractional-order proportional–integral–derivative (FOPID) controller for the first-order plus time-delay (FOPTD) system is developed. Assisted by a modified active disturbance rejection control (ADRC) scheme with increased observer bandwidth, the proposed FOPID controller inherently obtains good robustness to time-delay uncertainties and external disturbances. In addition, taking advantage of the fractional-order operator, the proposed controller can provide larger stability margin over the proportional–integral–derivative (PID) controller. By suitably establishing the relation between ADRC and FOPID controller parameters, the proposed controller can be analytically tuned based on the common design indices. A practical tuning guideline is developed according to frequency-domain characteristic analysis, making the proposed controller more acceptable to industrial application. The performance of the ADRC-based FOPID controller is tested by the control simulation of some typical FOPTD systems and a diesel engine speed regulation system. The efficiency of the ADRC-based FOPID controller is demonstrated by the comparisons with some existing controllers.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3