Adaptive nonlinear backstepping control using mended recurrent Romanovski polynomials neural network and mended particle swarm optimization for switched reluctance motor drive system

Author:

Lin Chih-Hong1ORCID

Affiliation:

1. Department of Electrical Engineering, National United University, Miaoli

Abstract

A switched reluctance motor (SRM) drive system has highly nonlinear uncertainties owing to a convex construction. It is hard for the linear control methods to achieve good performance for the SRM drive system. An adaptive nonlinear backstepping control system using the mended recurrent Romanovski polynomials neural network and mended PSO with an adaptive law and an error estimated law is proposed to estimate the lumped uncertainty and to compensate the estimated error in order to enhance the robustness of the SRM drive system. Additionally, in accordance with the Lyapunov stability theorem, the adaptive law in the mended recurrent Romanovski polynomials neural network and the error estimated law are established. Furthermore, to help improve convergence and to obtain better learning performance, the mended particle swarm optimization (PSO) algorithm is utilized for adjusting the two varied learning rates of the two parameters in the mended recurrent Romanovski polynomials neural network. Finally, some experimental results and a comparative analysis are verified that the proposed control scheme has better control performances for controlling the SRM drive system.

Funder

ministry of science and technology, taiwan

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Surface Control for the Switched Reluctance Motor;2023 International Conference on System Science and Engineering (ICSSE);2023-07-27

2. Khảo sát sự phân bố lực từ trong động cơ từ trở chuyển mạch mới;Can Tho University Journal of Science;2023-06-28

3. Retraction Notice;Transactions of the Institute of Measurement and Control;2023-02-01

4. Neural Network Based on Health Monitoring Electrical Equipment Fault and Biomedical Diagnosis;Computational Intelligence and Neuroscience;2022-08-21

5. Torque Ripple Suppression of Switched Reluctance Motor Based on Fuzzy Indirect Instant Torque Control;IEEE Access;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3