A gradient-descent iterative learning control algorithm for a non-linear system

Author:

He Zhiying12ORCID,Pu Hongji12

Affiliation:

1. Engineering Research Center of Mechanical Testing Technology and Equipment, Ministry of Education, Chongqing University of Technology, China

2. Chongqing Key Laboratory of Time-Grating Sensing and Advanced Testing Technology, Chongqing University of Technology, China

Abstract

Original iterative learning control (OILC) has been proved a powerful tool in dealing with the model-free control problems by repetitively corrections based on the control error. However, the steady-state error under widely-used proportional-type original iterative learning control (P-type OILC) is highly corresponded to the proportional learning gain, making the algorithm parameter-determined. Therefore, a new gradient-descent iterative learning control (GDILC) algorithm is proposed to achieve a parameter-free approach by simulating the gradient-descent process. First, GDILC problem is formulated mathematically. Next, the idea of the algorithm is proposed, the analyses of the convergence and the steady-state error are conducted and the algorithm is implemented. GDILC will generate a random correction with a gradient-descent upper bound, rather than a correction proportional to the error in P-type OILC. Finally, illustrative and application simulations are conducted to validate the algorithm. Results show that the algorithm will be convergent after adequate iterations under proper corrections. The steady-state error will be less affected by the algorithm parameters under GDILC than that under OILC.

Funder

Cultivation Program of National Natural Science Foundation Project and National Social Science Foundation Project of Chongqing University of Technology

Scientific Research Foundation of Chongqing University of Technology

Natural Science Foundation of Chongqing, China

Research and Innovation Team Cultivation Plan of Chongqing University of Technology

Science and Technology Research Program of Chongqing Municipal Education Commission

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3