A novel modified Lévy flight distribution algorithm to tune proportional, integral, derivative and acceleration controller on buck converter system

Author:

Izci Davut1,Ekinci Serdar2,Hekimoğlu Baran3ORCID

Affiliation:

1. Department of Electronics & Automation, Batman University, Turkey

2. Department of Computer Engineering, Batman University, Turkey

3. Department of Electrical & Electronics Engineering, Batman University, Turkey

Abstract

In this paper, an optimal proportional, integral, derivative and acceleration (PIDA) controller design based on Bode’s ideal reference model and a novel modified Lévy flight distribution (mLFD) algorithm is proposed for buck converter system. The modification of the original Lévy flight distribution (LFD) algorithm was achieved by improving exploration and exploitation capabilities of the algorithm through incorporation of opposition-based learning mechanism and hybridizing with simulated annealing algorithm, respectively. The modified algorithm was used to tune the gains of the PIDA controller in order to operate a buck converter system that is mimicking the response of the Bode’s ideal reference model. Both the proposed novel algorithm and its PIDA controller design implementation for buck converter were confirmed through various tests and extensive analyses of statistical and non-parametric tests, convergence profile, transient and frequency responses, disturbance rejection, robustness, and time delay response. The comparative results with the state-of-the-art algorithms of manta ray foraging optimization, arithmetic optimization algorithm and the original LFD algorithm have shown that the proposed mLFD algorithm performs better than the compared ones in all assessments even when different well-known performance indices are used. The proposed Bode’s ideal reference model-based optimal PIDA control design with novel mLFD algorithm was also compared with other design approaches using the same buck converter system available in the literature. The proposed mLFD algorithm-based design approach has also shown greater effectiveness compared to other available methods, as well.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3