Compound control for autonomous docking to a three-axis tumbling target

Author:

Ye Dong1,Lu Wei2,Mu Zhongcheng3

Affiliation:

1. Research Center of Satellite Technology, Harbin Institute of Technology, China

2. Beijing Institute of Astronautical Systems Engineering, China

3. School of Aeronautics and Astronautics, Shanghai JiaoTong University, China

Abstract

This paper investigates the coupled position and attitude control problem of an on-orbit servicing spacecraft autonomous docking to a three-axis freely tumbling target in space. A compound control law is presented to guarantee that the docking port of servicing spacecraft is always directing towards the docking port of tumbling target, which is accomplished through the combination of the coupled relative position tracking and relative attitude control. For the purpose of avoiding collision between the two spacecraft, a two-phased approach for the terminal approaching the tumbling target is proposed. Also, the compound control is composed of a nonlinear feedback control law and an integral sliding mode control law. The nonlinear feedback control law is mainly used to track the system command and the integral sliding mode control law is mainly used to deal with the external disturbances and system uncertainties to enhance the robustness of the control system. Furthermore, the control saturation problem is considered. In addition, the characteristic of integral sliding mode under the control constraint and measurement noise is also analyzed. Finally, several numerical simulations are performed to verify the effectiveness and robustness of the compound control law for autonomous docking to a three-axis freely tumbling target.

Publisher

SAGE Publications

Subject

Instrumentation

Reference27 articles.

1. Fejzić A (2008) Development of control and autonomy algorithms for docking to complex tumbling satellites. Master’s degree thesis, Massachusetts Institute of Technology, USA.

2. Orbital Express program summary and mission overview

3. Result of Autonomous Rendezvous Docking Experiment of Engineering Test Satellite-VII

4. Higher order sliding mode control based on integral sliding mode

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3