Model predictive control for pose synchronization of satellite proximity via the Takagi–Sugeno fuzzy modeling method

Author:

Chuqi Sun1ORCID,Yan Xiao1,Dong Ye1,Junyan Hou2,Zhaowei Sun1

Affiliation:

1. Research Center of Satellite Technology, Harbin Institute of Technology, P.R. China

2. Beijing Institute of Remote Sensing Information, P.R. China

Abstract

On-orbit servicing has become one of the challenging frontiers of space operations. Most of the on-orbit missions require an important technology, pose synchronization, to prepare or implement the tasks. The nonlinearity caused by the couple between orbit and attitude often brings inconvenience when designing series of control strategies. This paper addresses a novel reformulation for pose dynamics based on dual quaternion, in which the problem of the nonlinearity of pose coupled dynamics for rigid spacecraft is mainly concerned. In this research, we intend to use the Takagi–Sugeno (TS) fuzzy modeling method to remodel the pose dynamics based on dual quaternion. Based on the reconstructed model, the original nonlinear system can be equivalently linearized in the fuzzy field. Subsequently, a global stabilized controller for system stabilization as a feasible control scheme is proposed. For further research, a feedback-based model predictive control (MPC) strategy is proposed to optimize the fuel consumption during the stabilization of the system. Finally, numerical simulations are provided to verify the effectiveness of the proposed modeling and control strategies.

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3