Integrated model predictive fault-tolerant control, and fault detection based on the parity space approach for a reverse osmosis desalination unit

Author:

Mehrad Reza1,Kargar Seyed Mohamad12ORCID

Affiliation:

1. Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

2. Smart Microgrid Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran

Abstract

Actuator faults are inevitable in small reverse osmosis desalination plants. It may cause energy losses and reduce the quality of the freshwater, which may endanger human life. This paper focuses on the integrated fault detection and fault-tolerant control approach. The primary motivation of this paper is to propose a novel integrated fault detection and fault-tolerant control approach. The actuator fault is estimated using the concept of parity space approach. Then the system model is updated in the fault-tolerant control block using the information of the estimated fault parameter. Moreover, the proposed approach uses the receding-horizon predictive control-bounded data uncertainties controller, which is the robust and stable variant of generalized predictive control. The remaining uncertainty caused by the model and observer is compensated by this controller. The structure of a small reverse osmosis desalination plant is deployed. In this plant, the permeate flow rate and conductivity are controlled by a retentate valve and a bypass valve, which add a small amount of inlet to the outlet. The performances of three predictive model controllers are evaluated, and a comparison is made between their computational costs, stability, and robustness. The plant is considered to be linear time-invariant and subject to model uncertainties, measurement noise, and actuator fault in the retentate valve as efficiency dropping. The results reveal the robustness of the proposed approach concerning noise and matched uncertainties as well as its accommodation to actuator fault up to 90%.

Publisher

SAGE Publications

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3