A novel adaptive maximum correntropy cubature Kalman filter based on multiple fading factors

Author:

Gu Peng12ORCID,Jing Zhongliang2,Wu Liangbin3

Affiliation:

1. Jiangsu Vocational College of Information Technology, China

2. School of Aeronautics and Astronautics, Shanghai Jiao Tong University, China

3. AVIC Leihua Electronic Technology Research Institute, China

Abstract

In this paper, an adaptive maximum correntropy cubature Kalman filter based on multiple fading factors (MAMCKF) is proposed to address the problem of inaccurate process noise covariance and unknown measurement noise covariance together with outliers in target tracking. Although there are many adaptive filters and robust filters have been proposed to handle unknown measurement noise covariance or measurement outliers, most filters cannot deal with both unknown noise covariance and outliers simultaneously. In this article, we propose an adaptive and robust cubature Kalman filter. The modified measurement noise covariance matrix (MNCM) and innovation covariance matrix are used to construct multiple fading factors for correcting the prediction error covariance matrix (PECM), which can achieve adaptability. Then, the maximum correntropy criterion (MCC) is introduced to suppress outliers, which further enhances the robustness. Compared with the existing approaches, the proposed approach improves the performance by at least 5% in unknown time-varying noise, unknown time-varying heavy-tailed noise, and non-Gaussian heavy-tailed noise scenarios. The simulation results show that the proposed approach can effectively suppress inaccurate process noise covariance and unknown time-varying measurement noise together with outliers. Compared with the existing filtering approaches, the proposed approach exhibits both adaptability and robustness.

Funder

Shanghai key Project of Basic Research

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3