On real-time creep damage prediction for steam turbine

Author:

Sun Yongjian1ORCID,Xu Bo1ORCID

Affiliation:

1. School of Electrical Engineering, University of Jinan, China

Abstract

In this paper, in order to solve the calculation problem of creep damage of steam turbine rotor, a real-time calculation method based on finite element model is proposed. The temperature field and stress field of the turbine rotor are calculated using finite element analysis software. The temperature data and stress data of the crucial positions are extracted. The data of temperature, pressure, rotational speed, and stress relating to creep damage calculation are normalized. A real-time creep stress calculation model is established by multiple regression method. After that, the relation between stress and damage function is analyzed and fitted, and creep damage is calculated in real-time. A creep damage real-time calculation system is constructed for practical turbine engineering. Finally, a numerical simulation experiment is designed and carried out to verify the effectiveness of this novel approach. Contributions of present work are that a practical solution for real-time creep damage prediction of steam turbine is supplied. It relates the real-time creep damage prediction to process parameters of steam turbine, and it bridges the gap between the theoretical research works and practical engineering.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3