Velocity measurement for omni-directional intelligent wheelchair

Author:

Li Xiuzhi1,Zhao Guanrong1,Jia Songmin1,Xu Chuanluo1,Qin Baoling1

Affiliation:

1. College of Electronic Information & Control Engineering, Beijing University of Technology, Beijing, China

Abstract

This paper presents an optical flow-based novel technique to perceive the instant motion velocity of a smart wheelchair robot. The primary focus of this study is to determine the wheelchair’s ego-motion using a displacement field in temporally consecutive image pairs. In contrast to most previous approaches for estimating velocity, the proposed strategy has two main innovations. Firstly, the proposed tilted overlooking camera set-up instead of conventional downward-looking camera and the corresponding ego-motion model is presented for compact indoor mobile robots. Secondly, by virtue of the graphic processing unit-accelerated TV- L1 algorithm, which is coupled with motion priors-based pixel prediction, we are permitted to improve the accuracy and efficiency of the optical flow estimation significantly. In order to render our method more robust with respect to noise and outliers, we propose a quadratic motion model-based random sample consensus (RANSAC) refinement of flow fields. Advantages of our proposal are validated by real experimental results carried on our smart wheelchair platform and contrast evaluations conducted on Pioneer robot.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3