A new multimodel approach by Laguerre filters on sliding window for nonlinear system identification and control

Author:

Adaily Sameh1,Mbarek Abdelkader1ORCID,Garna Tarek12

Affiliation:

1. Laboratory of Automatic Control, Signal and Image Processing, National Engineering School of Monastir, University of Monastir, Tunisia

2. Higher Institute of Applied Science and Technology of Sousse, University of Sousse, Tunisia

Abstract

This paper proposes an online identification procedure on sliding window with the synthesis of a nonlinear adaptive predictive control for a new nonlinear model resulting in multimodel approach. Such a model is entitled ARX-Laguerre multimodel obtained by expanding the conventional ARX multimodel on independent Laguerre orthonormal bases. It allows a significant parameter number reduction as well as a simple recursive representation compared with the ARX-multimodel. This parametric reduction is provided from an optimal iteratif identification approach of the Laguerre poles presented in Adaily et al. (2013). We propose to combine and carry out this identification approach on a sliding window to achieve an online identification procedure of the ARX-Laguerre multimodel for real time procedure depending on Fourier coefficients that are identified by a regularized square error. This property allows to synthese a new nonlinear adaptive predictive control on sliding window. We develop the general form of a new predictor and so, we propose an optimization algorithm formulated as a quadratic programming (QP) under linear constraints for an adaptive control law. The performances of the proposed online identification procedure and the developed nonlinear adaptive control algorithm are illustrated on a benchmark system as the continuous stirred tank reactor system (CSTR) with respect to the process parameter uncertainties.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3