Affiliation:
1. Department of Applied Mathematics, School of Mathematics and Statistics, Xi’an Jiaotong University, P.R. China
Abstract
This paper investigates an adaptive iterative learning control (AILC) scheme for a class of switched discrete-time linear systems with stochastic measurement noise. For the case when the subsystems dynamics are unknown and the switching rule is arbitrarily fixed, the iteration-wise input-output data-based system lower triangular matrix estimation is derived by means of minimizing an objective function with a gradient-type technique. Then, the AILC is constructed in an interactive form with system matrix estimation for the switched linear systems to track the desired trajectory. Based on the derivation of the boundedness of the estimation error of system matrix, by virtue of norm theory and statistics technique, the tracking error and the covariance matrix of the tracking error are derived to be bounded, respectively. Finally, the AILC concept is extended to nonlinear systems by utilizing linearization techniques. Simulation results illustrate the validity and effectiveness of the proposed AILC schemes.
Funder
national natural science foundation of china
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献