Rotor speed control strategy to avoid resonance frequencies of turbo-molecular pump

Author:

Chiu Hsin-Lin1,Tsai Nan-Chyuan1

Affiliation:

1. Department of Mechanical Engineering, National Cheng Kung University, Tainan City, Taiwan

Abstract

A novel design of composite turbo-molecular pump (CTMP) is proposed. The major configuration of CTMP is composed by a coarse pump, a turbo-molecular pump (TMP) and a magnetic gear unit (MGU) capable of speed amplification. The modal analysis and the study on rotor/bearing dynamics are undertaken at first to estimate the resonance frequencies of the TMP blade rotor itself solely and the interactive dynamics of blade rotor/radial active magnetic bearing (BR/RAMB) subsystem. Secondly, an economical and efficient method by adjusting the angular acceleration speed of BR, namely RDPS, is proposed to ensure the natural frequencies of BR/RAMB sub-system are not driven by the rotor speed all the time. Besides, a speed route of rotor during the take-off cycle of TMP is proposed to satisfy the requirements of system stiffness and prevention of system resonance being driven. Finally, a position conversion method is introduced to solve the problem of distinct locations of gap sensors and the actual gap between rotor and the auxiliary bearings such that the measurement feedback to the controller, RDPS, becomes applicable to formulate the correct actions for providing enough gap margin to prevent collision of rotor against bearings. To sum up, the CTMP possesses the merit of reduction of electrical energy consumption by 17%, compared with the conventional TMP unit. By intensive computer simulations, the RDPS indeed manifests its outstanding performance to efficiently skip or bypass the natural frequencies of the closed-loop system within a very short time period and guarantee the system stability.

Funder

Ministry of Science and Technology

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3