RFID multi-tag dynamic detection measurement based on conditional generative adversarial nets and YOLOv3

Author:

Li Lin12ORCID,Yu Xiaolei12ORCID,Liu Zhenlu1,Zhao Zhimin1,Zhang Ke1,Zhou Shanhao1

Affiliation:

1. College of Science, Nanjing University of Aeronautics and Astronautics, China

2. National Quality Supervision and Testing Center for RFID Product (Jiangsu), China

Abstract

The quality of multi-tag imaging greatly affects the effective detection of multi-tag. When multi-tag moves rapidly, the image may have serious dynamic blur, and tags can not be detected efficiently. In previous work, it is generally assumed that blur kernel and noise stationary to improve image quality. However, the dynamic deblurring of Radio Frequency Identification (RFID) multi-tag imaging is an ill-posed inverse problem. In this paper, firstly, blur-sharp multi-tag image pairs are made by superimposing and averaging the adjoin random frames. Then, we propose blind deblurring for dynamic RFID multi-tag imaging based on conditional generative adversarial nets (CGANs), which adds perceptual loss and content loss to generator to make image sharper. Finally, tags are detected by YOLOv3 in real time in end-to-end manner. Experimental results demonstrate that PSNR is at least 0.56dB higher and speed is at least 31.25 % faster than that of the current improved convolution neural networks (CNN). CGANs can remove image blur better, which has great superiority in the field of dynamic multi-tag imaging. In addition, YOLOv3 detects multi-tag quickly, thereby improving the detection accuracy.

Funder

the Fund Project of Jiangsu Engineering Laboratory for Lake Environment Remote Sensing Technologies

Six Talent Peaks Project in Jiangsu Province

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generative adversarial network–assisted image classification for imbalanced tire X-ray defect detection;Transactions of the Institute of Measurement and Control;2023-01-06

2. NSAW: An Efficient and Accurate Transformer for Vehicle LiDAR Object Detection;IEEE Transactions on Instrumentation and Measurement;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3