Affiliation:
1. Tianjin Key Laboratory of Equipment Design and Manufacturing Technology, School of Mechanical Engineering, Tianjin University, Tianjin, China
2. Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
Abstract
This paper presents the dynamic modeling and controller design of an XY positioning stage for semiconductor packaging. The XY stage is directly driven by two linear voice coil motors, and motion decoupling between the X and Y axes is realized through a novel flexible decoupling mechanism based on flexure hinges and preloaded spring. Through bond graph method, the dynamic models of X- and Y-axes servomechanisms are established, respectively, and the state space equations are derived. A control methodology is proposed based on force compensations and the performance of the XY stage is investigated by simulations and experimental tests. The results show that the XY stage has good performance. When the reference displacements are defined as 2 mm, the settling time of the X-axis movement is 64 ms, and the overshoot is 0.7%. Y-axis settling time is 62 ms, and the overshoot is 0.8%. X-axis positioning accuracy is 1.85 μm and the repeatability is 0.95 μm. Y-axis positioning accuracy and repeatability are 1.75 μm and 0.9 μm, respectively. In addition, the stage can track linear, circular and complex trajectories very well.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献