An improved particle swarm optimization algorithm applied to long short-term memory neural network for ship motion attitude prediction

Author:

Peng Xiuyan1,Zhang Biao1ORCID,Zhou Haiguang2

Affiliation:

1. College of Automation, Harbin Engineering University, China

2. Systems Engineering Research Institute, Beijing, China

Abstract

This paper proposes a prediction method of ship motion attitude with high accuracy based on the long short-term memory neural network. The model parameters should be initialized randomly, resulting in critical decreases of the nonlinear learning ability of current parameter optimization methods. Therefore, a multilayer heterogeneous particle swarm optimization is proposed to optimize the parameters of long short-term memory neural network and applied to the prediction of ship motion. In multilayer heterogeneous particle swarm optimization, this paper proposes the concept of attractors, transforms the speed update equation, enhances the information interaction ability between particles, improves the optimization performance of the particle swarm optimization algorithm, and improves its optimization effect on the parameters of the long short-term memory networks. In the simulations, the measured data were used as input to predict the results of the ship motion. The results showed that the proposed method offers higher learning accuracy, faster convergence speed, and better prediction performance for accurate estimation of ship motion attitude than existing methods.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3