Algebraic estimator of Parkinson’s tremor frequency from biased and noisy sinusoidal signals

Author:

Yaşar Claudia F.1ORCID

Affiliation:

1. Control and Automation Engineering Department, Yildiz Technical University, Turkey

Abstract

Tremor is an uncontrolled trembling movement or shakes, which are defined as an involuntary, rhythmic oscillatory movement of the body. The dominant features of Parkinsonism are the motor task and its frequency. This paper presents studies on the tremor parameter identification to be used for obtaining the frequency as a dynamical feature of the tremor. The method is based on the analysis of time-varying signals for identification of the tremor’s frequency from unknown noisy harmonic signals with an offset, using time-varying unstable filters and low-pass Butterworth filters. This approach uses an algebraic derivative method, in the frequency domain, to obtain the main frequency of tremors in the time domain. The first frequency mode of the tremor is one of the main characteristics to represent the low vibrational dynamics of Parkinson’s tremor. The proposed frequency estimation is performed in less than a period of the slower component of the measured signal. Real tremor signals were used to experimentally validate the proposed method and the algorithm proved to be fast and robust to high-frequency noises tracking the time variation of the tremor accurately.

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Frequency Offset Estimation of X-band Marine Radar Sampling Signal Based on Phase Difference;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

2. Estimating Unknown Parameters of a Noisy Damped Real/Complex Sinusoidal Signal in Two Dimensions Based on the Integral Linear Least Squares Algorithm;Iranian Journal of Science and Technology, Transactions of Electrical Engineering;2023-05-17

3. Active Control Experiments on a Smart Robotic Glass with End-Point Control for Parkinson’s Patients;Applied Bionics and Biomechanics;2023-04-28

4. A Fast Online Estimator of the Main Vibration Mode of Mechanisms from a Biased Slightly Damped Signal;IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society;2022-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3