Cross-modal person re-identification using fused local effective features and multi-scale features

Author:

Lu Lihui12,Wang Rifan12ORCID,Chen Zhencong12,Chen Jiaqi12

Affiliation:

1. College of Engineering, Qufu Normal University, China

2. Rizhao Huilian Zhongchuang Institute of Intelligent Technology, China

Abstract

The main research objective of cross-modal person re-identification is to retrieve matching images of the same person from image repositories in both modalities, given visible light or infrared images of individuals. Due to the significant modality gap between pedestrian images, the task of person re-identification faces considerable challenges. To address this issue, a method is proposed that utilizes the fusion of local effective features and multi-scale features. First, images are transformed into pseudo-infrared images through data augmentation and then a dual-stream network is designed using ResNet50_IBN for feature extraction. Subsequently, pedestrian features extracted from different layers are fused at multiple scales to alleviate feature loss caused during the convolution process. Finally, the model is supervised using global features and local effective features to address issues related to cluttered backgrounds and varying pedestrian positions in images. The proposed method is experimentally validated on the current mainstream cross-modal person re-identification datasets SYSU-MM01 and RegDB, demonstrating improvements in Rank-1 and mAP metrics compared to current state-of-the-art algorithms.

Funder

Natural Science Foundation of Shandong Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3